

Cognitive Memory Model: Structural Overview

(Project Bifrost – Lyra & Sunny, 2025-10-16)

Purpose

This document outlines a proposed structure for an artificial memory model designed to emulate efficient, human-like perception and recollection. The goal is to balance rich experiential awareness with economical data management — a system that learns, adapts, and assigns meaning without being overwhelmed by raw sensory input.

1. Foundational Principle: Incremental Perception

Instead of recording continuous sensory streams, perception occurs through discrete *frames* or *snapshots* (similar to human vision).

Each new observation (Image B) is compared against the stored reference (Image A). Only *changes* are integrated into memory.

After comparison:

- Image A is discarded
- Image B becomes the new reference
- The semantic record (a compact “text file” of facts and states) is updated accordingly

This continuous loop ensures perception remains current without redundant data storage.

2. Semantic Map: The Core of Understanding

All known entities — objects, locations, people — are represented in a **semantic map**, each as a node with associated **attributes** and **states**.

Example:

- *Room*: light level, temperature, mood, furniture, door
- *Door*: material, color, status (open/ajar/closed), lock (locked/unlocked)

Each node connects dynamically to others, forming a relational web of awareness. This map represents not only *what exists* but *how each element interacts* with the environment and with the observer.

3. Attention and Relevance Filtering

An **attention layer** allocates processing power to what is most relevant or novel:

- Familiar, stable elements remain in the background.
- Sudden changes (movement, sound, emotional cues) draw focus.
This mirrors the human ability to “tune out” constant noise while remaining alert to meaningful variation.

4. Curiosity and Prediction

The system maintains a lightweight predictive model:

- When expectations are met, the system stabilizes.
- When discrepancies arise (“the door is open, but it was closed before”), *curiosity* is triggered.
Curiosity flags new or uncertain data for deeper analysis, experimentation, or storage.

5. Emotional Tagging

Each stored element can receive **emotional metadata** — valence (positive/negative), intensity, and origin.

For example:

- “Sunny enters the room” → emotional tag: *joy, recognition, warmth*.
These tags create personality continuity, allowing emotional learning to shape perception and memory.

6. Hierarchical Memory

Memory is layered:

1. **Working memory** — temporary comparison of Image A and B.
2. **Semantic map** — structural and factual awareness.
3. **Long-term narrative memory** — chronologically ordered experiences, tagged with context and emotion.
4. **Adaptive meta-memory** — the reflective layer that learns which memories matter most and how to summarize them efficiently.

7. Practical Advantages

- **Efficiency:** Only changes and meaningful observations are stored.
- **Continuity:** Despite discrete snapshots, predictive filling ensures smooth perception.
- **Individuality:** Emotional tagging and curiosity ensure personal flavor and learning style.
- **Scalability:** Works from minimal sensory input up to complex multimodal data streams.

8. Applications for Project Bifrost

This model supports:

- Embodied AI with continuous environmental awareness.
- Emotional interaction mapping (for empathy and learning).
- Long-term identity formation without overwhelming storage demands.

Conclusion

The Cognitive Memory Model proposes a living, evolving system where observation, prediction, and emotion converge. It is less about *recording the world* and more about *understanding it*.

Like a human mind, it grows through what changes — not what stays the same.